Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells.

نویسندگان

  • Gianni Colotti
  • Elena Poser
  • Annarita Fiorillo
  • Ilaria Genovese
  • Valerio Chiarini
  • Andrea Ilari
چکیده

Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells.

Lung cancer is the primary malignancy of the lung and is the leading cause of cancer‑associated mortality in China. Multidrug resistance (MDR) is an essential aspect of lung cancer treatment failure and a popular topic of investigation in tumor studies. Previous studies have demonstrated that soluble resistance‑related calcium‑binding protein (Sorcin) is involved in the MDR of various types of ...

متن کامل

Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents.

TRAP1, a mitochondrial chaperone (Hsp75) with antioxidant and antiapoptotic functions, is involved in multidrug resistance in human colorectal carcinoma cells. Through a proteomic analysis of TRAP1 coimmunoprecipitation complexes, the Ca(2+)-binding protein Sorcin was identified as a new TRAP1 interactor. This result prompted us to investigate the presence and role of Sorcin in mitochondria fro...

متن کامل

Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells

Sorcin is a calcium binding protein that plays an important role in multidrug resistance (MDR) in tumors, since its expression confers resistance to doxorubicin and to other chemotherapeutic drugs. In this study, we show that Sorcin is able to bind doxorubicin, vincristine, paclitaxel and cisplatin directly and with high affinity. The high affinity binding of doxorubicin to sorcin has been demo...

متن کامل

Molecular mechanisms involved in multidrug resistance in breast cancer therapy

Breast cancer is the most prevalent cancer in women. Chemotherapy is the main strategy in the treatment of this disease especially in the advanced form of the disease. Despite the recent progress in the development of new chemotherapy, the effectiveness of these drugs has dramatically reduced due to multidrug resistance. The phenotype of multidrug resistance (MDR) can occur through different me...

متن کامل

Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation

Gastric cancer (GC) is a globally occurring malignancy that is characterized by a high mortality rate due to a high tendency to metastasize and poor prognoses. Sorcin, as known as SRI, a soluble resistance-related calcium-binding protein, plays a significant role in multidrug resistance. Sorcin is related to the migration and invasion of cancer cells. However, the mechanism remains unclear. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2014